skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sengupta, Wrick"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Collisionless systems often exhibit nonthermal power-law tails in their distribution functions. Interestingly, collisionless plasmas in various physical scenarios (e.g., the ion population of the solar wind) feature av−5tail in their velocity (v) distribution, whose origin has been a long-standing puzzle. We show this power-law tail to be a natural outcome of the collisionless relaxation of driven electrostatic plasmas. Using a quasi-linear analysis of the perturbed Vlasov–Poisson equations, we show that the coarse-grained mean distribution function (DF),f0, follows a quasi-linear diffusion equation with a diffusion coefficientD(v) that depends onvthrough the plasma dielectric constant. If the plasma is isotropically forced on scales larger than the Debye length with a white-noise-like electric field,D(v) ∼v4forσ<v<ωP/k, withσthe thermal velocity,ωPthe plasma frequency, andkthe characteristic wavenumber of the perturbation; the corresponding quasi-steady-statef0develops av−(d+ 2)tail inddimensions (v−5tail in 3D), while the energy (E) distribution develops anE−2tail independent of dimensionality. Any redness of the noise only alters the scaling in the highvend. Nonresonant particles moving slower than the phase velocity of the plasma waves (ωP/k) experience a Debye-screened electric field, and significantly less (power-law suppressed) acceleration than the near-resonant particles. Thus, a Maxwellian DF develops a power-law tail, while its core (v<σ) eventually also heats up but over a much longer timescale. We definitively show that self-consistency (ignored in test-particle treatments) is crucial for the emergence of the universalv−5tail. 
    more » « less