- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Banik, Uddipan (1)
-
Bhattacharjee, Amitava (1)
-
Sengupta, Wrick (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
& Attari, S. Z. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Collisionless systems often exhibit nonthermal power-law tails in their distribution functions. Interestingly, collisionless plasmas in various physical scenarios (e.g., the ion population of the solar wind) feature av−5tail in their velocity (v) distribution, whose origin has been a long-standing puzzle. We show this power-law tail to be a natural outcome of the collisionless relaxation of driven electrostatic plasmas. Using a quasi-linear analysis of the perturbed Vlasov–Poisson equations, we show that the coarse-grained mean distribution function (DF),f0, follows a quasi-linear diffusion equation with a diffusion coefficientD(v) that depends onvthrough the plasma dielectric constant. If the plasma is isotropically forced on scales larger than the Debye length with a white-noise-like electric field,D(v) ∼v4forσ<v<ωP/k, withσthe thermal velocity,ωPthe plasma frequency, andkthe characteristic wavenumber of the perturbation; the corresponding quasi-steady-statef0develops av−(d+ 2)tail inddimensions (v−5tail in 3D), while the energy (E) distribution develops anE−2tail independent of dimensionality. Any redness of the noise only alters the scaling in the highvend. Nonresonant particles moving slower than the phase velocity of the plasma waves (ωP/k) experience a Debye-screened electric field, and significantly less (power-law suppressed) acceleration than the near-resonant particles. Thus, a Maxwellian DF develops a power-law tail, while its core (v<σ) eventually also heats up but over a much longer timescale. We definitively show that self-consistency (ignored in test-particle treatments) is crucial for the emergence of the universalv−5tail.more » « less
An official website of the United States government
